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ABSTRACT

The Applicative Programming System Architec-

ture combines an applicative language interpreter with
a novel parallel computer architecture that is well suited

for VLSI implementation. The Massively Parallel Pro-

cessor can simulate VLSI circuits by allocating one pro-

cessing element in its square array to an area on a square

VLSI chip. As long as there are not too many long data

paths, the MPP can simulate a VLSI clock cycle very
rapidly. The APSA circuit contains a binary tree with
a few long paths and many short ones. A skewed H-

tree layout allows every processing element to simulate

a leaf cell and up to four tree nodes, with no loss in

parallelism. Emulation of a key APSA algorithm on
the MPP resulted in performance 16,000 times faster

than a Vax. This speed will make it possible for the

APSA language interpreter to run fast enough to sup-
port research in parallel list processing algorithms.

Keywords: parallel simulation, VLSI, tree architecture,

applicative language, functional language.

INTRODUCTION

The Applicative Programming System Architec-

ture research project (Refs. 4, 5, 6) (APSA) combines
VLSI hardware design, computer architecture, and pro-

gramming language research in one unified design for

a high level language implementation. The hardware

design of APSA uses parallelism extensively, making

it impossible to run realistic simulations on sequential

processors. This has been a major impediment in the

research on APSA. Fortunately, the Massively Paral-

lel Processor (MPP) provides exactly the kind of par-

allelism needed by APSA's hardware, as well as other

parallel VLSI architectures. This paper discusses the

goals and structure of the APSA research, and then it

describes the methods used for programming the MPP

to emulate APSA's parallelism. Finally, it discusses the
suitability of the MPP's architecture for this work.

The tasks of designing a programming language im-

plementation, a computer architecture for executing it,

and a low level fabrication of the hardware usually pro-

ceed independently of each other. As a result, there is
a small set of standard basic ways to relate these levels

of abstraction to each other: instruction sets provide an

interface between language and architecture, while reg-
isters, data paths and addressable memories relate the

architecture to the hardware. These standards greatly

limit the types of architecture and language that are
available.

The idea of "high-level language architectures" at-

tempts to improve a computer's performance by break-

ing away from the standard kind of instruction set, re-

placing it with a set of instructions especially well suited

for a particular programming language. Several manu-

facturers have built such systems, supporting languages
such as Algol, Cobol and Lisp. But these architectures

are still limited because they are built with conventional

hardware techniques and components.

The Applicative Programming System Architec-

ture research is moving toward improved performance

by designing the low level hardware, the high level ar-

chitecture and the language translator together. Ap-
plicative programming languages (also called functional

languages) have many advantages over conventional im-

perative languages, but they are notoriously slow in con-

ventional implementations. The problem is that stan-

dard instruction sets give poor support for the basic

data structure operations in applicative languages. Fur-
thermore, the standard methods for designing high-level

language architectures don't help much, because con-

ventional hardware techniques prevent the architecture

from supporting some of the most useful operations.

Research in applicative programming languages is
very active, and many examples exist. The current

work on APSA is focusing on two particular languages:

Scheme (a dialect of Lisp) and SASL. These languages
and their relatives play a central role in artificial intel-

ligence, and their use in other fields is expanding. Thus

it would be inherently useful to learn how to implement
such languages on the MPP.

The APSA architecture contains instructions for

manipulating lists, vectors, environments, and contin-

uations -- the key data structures for applicative lan-

guages. These instructions perform many operations in

a constant amount of time which would require itera-
tion in linear time with conventional instructions. For

example, consider a program that needs to find the last

element of a list. This normally requires a loop, where
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every iteration follows a pointer from one list element to
the next. APSA has an instruction that can find the last

element of a list in one cycle, and a similar instruction

allows indexing into a list to find the nth element in 1

cycle. Of course, Fortran can do the same thing with an

array on a conventional computer -- but Fortran cannot
then insert a new element into the middle of the array

in constant time. The point is not that APSA supports

a fast data structure operation, but rather that it sup-

ports many fast operations that can be applied to the

same data structure (Ref. 6}.

The power of APSA's instruction set results from

the ability of its memory to perform parallel logic op-

erations on data, in addition to just storing the data.

Each basic storage unit in the memory, called a cell,
can hold one word of data. An APSA word corresponds

roughly to a Lisp cons box or a Fortran array element.

The cells are organized into a linear address space, just

as in conventional computer memories. However, each

cell also contains low-level processing capability. In ad-
dition, there are two basic kinds of internal memory

operation that require parallel hardware; these opera-

tions lead to the differences between APSA memory and

conventional memory.

• Shift. Each cell reads the contents of its left

or right neighbor, performs a logic operation on

that value and its current state, and stores a new

value -- which may be its old value, the contents

of its neighbor, or another value (resulting from a

sweep operation). If a number of adjacent cells all
store the contents of their left neighbor, the net ef-

fect is that a sequence of words shifts right. Since

each cell's logic hardware controls the value that it

stores, some cells may do a shift while others re-

main unchanged. This allows the memory to insert

or delete a word in the middle of a data structure,

in one clock cycle.

• Sweep. The memory performs a global logic op-
eration on the contents of all the cells and an in-

put from the memory controller. Part of the logic

hardware computes a value that it returns to the

controller; this is how the controller is able to fetch

data from the memory. Other parts of the logic

compute independent values to be sent to each cell

in the memory. If we ask for arbitrary logic oper-

ations, the complexity of the hardware would get

out of hand. Therefore, APSA supports only logic

operations that can be implemented with a binary

tree of combinational logic components. This re-

striction leads to manageable but powerful hard-
ware.

The shift operation requires data paths connecting each

pair of adjacent cells, and the sweep operation requires

a binary tree of combinational logic whose root is a port
to the memory controller and whose leaves are the cells.

Figure 1 illustrates this organization.

Top

Figure 1. APSA Memory Organization

The reason that APSA algorithms cannot be used

in implementing applicative languages on ordinary com-
puters is simply that simulating the shift and sweep

operations takes too much time. At the very least, a

computer needs several thousand words of memory to

be able to run interesting programs. But that would

require a sequential simulator to operate separately on
several thousand cells and several thousand logic tree

nodes -- just to compute the effect of APSA's memory

during one clock cycle. APSA's algorithms are fast, but

they are not fast enough to overcome this speed penalty

of 3 to 6 orders of magnitude.

VLSI technology (very large scale integrated cir-

cuits) is good at implementing highly parallel systems

with large numbers of small components, as long as the
data paths connecting the components do not waste too

much area on the chip. There is a standard method for

laying out a binary tree on a square VLSI layout, where

the subtrees appear on opposite sides of the node above
them. For nodes at an even-numbered level, the sub-

trees are placed to the east and west; nodes at an odd-
numbered level have their subtrees placed to the north

and south. This results in the "H-tree layout" (Ref. 3).

It also turns out that adjacent cells in an H-tree can be

connected efficiently.

The original idea in the APSA project was to ex-

ploit the properties of VLSI in order to build a parallel

data structure memory. This VLSI design is currently

in progress, but there is another problem: details of the

design of the cells and the logic tree have a profound

impact on the large scale performance of the applica-
tive programming language. For example, a low level
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decisiononthe representation of data in a cell may af-

fect the frequency of garbage collections. Furthermore,

the system must run for thousands of cycles before such

effects show up. This has lead to a very serious diffi-

culty: simulation of the VLSI layout is far too slow to

allow enough experimentation with the system's over-
all behavior to be able to make correct decisions about

details of the VLSI layout!

The MPP provides exactly the same kind of paral-

lelism that VLSI does. Each processing element (PE)

combines storage with logic, and is connected to nearby
PEs. Thus it is possible to map a square VLSI layout

onto the square MPP array, with each PE performing

the function of the corresponding area of the chip. The

MPP also has a limitation: long distance communica-

tions are relatively slow because messages must be sent

along a path consisting of adjacent PEs. Long data
paths also lead to poor performance in VLSI, so good

chip designs tend to have a small number of long data

paths and a very large number of short ones. Such de-

signs are well suited for implementation on the MPP.

Ref. 7 describes the basic methods of digital cir-
cuit simulation and outlines how the MPP can simulate

VLSI circuits. The next section discusses APSA data

structure operations and parallelism, and the remain-

der of this paper is concerned specifically with the im-

plementation of APSA on the MPP. The APSA/MPP

program directly transfers all of APSA's parallelism into

MPP parallelism, so it seems more appropriate to call
it an emulator rather than a simulator.

DATA STRUCTURES IN APSA

A complete description of the data structures and

algorithms for APSA is beyond the scope of this paper,

but a brief example will clarify the general ideas. The

most interesting algorithms are for maintaining aggre-

gate data structures, environments, continuations and

for performing garbage collections. These algorithms

are too complex to discuss here, so this section describes

operations on a simple combined list/vector data struc-
ture.

APSA can represent the list (a b d e) in a com-

pact form by storing the list elements in consecutive

neighboring cells. Each cell contains a type field; we
are only concerned with the cells that contain a value.

In addition, each cell contains several flags. The at-

tached flag (denoted by _,) indicates that a cell repre-
sents a value in a list that continues on into the next

cell. Therefore all the list elements except the last will

be in cells with _, set. This leads to the following repre-
sentation:

va/ va; ya/ val

a b d e

Now suppose that we want to insert a new element

"c" into the list just after the occurrence of "b". This

takes three instructions. First, the program must locate

the point where the insertion should be made, using an

associative search. The match instruction does this, and

sets the select flag (denoted by -) in that cell:

va/ "va/ va/ val

a b d e

As the program inserts c into the list, it must move all

the elements before it to the left, leaving room for the

insertion. This will destroy the contents of the leftmost
cell, which is part of the available space list. However,

only the cells to the left of the point of insertion should

store the contents of their right neighbor; cells to the

right of the insertion must remain unchanged. There-

fore the program must compute another flag called mark

(denoted by o) which will control the shift. The mark
to select instruction sets o in all the cells that lie to the

left of the selected cell:

I ° I °_ "valval_'l va/ val [

I I a. I b I d e I

Now the program can issue the insert (c) instruction,

which causes each cell to perform an operation that de-

pends on its flag settings. Cells with o set will store
the contents of their right neighbor, the cell with • set

will store the instruction operand c, and all other cells

remain unchanged. The net effect is to insert c into the

list, while destroying one element of the available space

pool:

ol> ol> • I> _>

val val val val val

a b c d e

Note that such an insertion always takes three cy-

cles, regardless of where the insertion takes place. List

processing systems based on linked representation can
also quickly insert a new element. However, suppose

that the program now needs to find the fourth element

in the list. The linked list representation requires it-

eration to do this; the time to find the nth element is

proportional to n. APSA can index directly to the nth

list element, just as if the list is an ordinary vector.

First, the program uses the match instruction again to
select the beginning of the list:
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"va/va, va/ va, 1
a b c d e I

Next, the index (n) instruction directly locates the nth

element in one cycle. Thus index (3) produces:

va/ val va/ "va/ val ]

a b c d e

The point of this example is that one data structure

supports both vector and list operations. This leads to
a richer set of data structures and algorithms than con-

ventional computers provide. Notice that APSA used

parallelism inside each instruction, allowing it to per-

form a task using fewer instructions than a conventional
system.

APSA uses more complex hardware to execute

fewer instructions. This leads to a crucial question:

does APSA 's speedup in number of cycles overcome its

overhead in cycle time? Consider first the speedup. In-

dexing to the nth element of a list normally takes time
O(n), while APSA does this in time O(1). Many other

APSA algorithms show the same O(n) reduction in the

number of instructions executed. Calculating the over-

head in cycle time is a more subtle problem. At first

sight, it appears that APSA's cycle time is slower than

a conventional machine's by a factor of O(log n) because
of the tree. We normally think of a computer's RAM

memory as having a constant access time: as the prob-

lem size grows the memory does not slow down. How-

ever, that is only true as long as the memory is large

enough to hold the problem. And it turns out that as

the size of a RAM memory increases, its access time
slows down. There are two distinct reasons for this.

First, a RAM uses a decoder to select the addressed

word -- and a decoder is a tree of combinational logic.

Second, as a RAM grows in size its wires become longer,

and the electrical delay across the wires becomes signif-
icant. Of course, both of these factors affect APSA:

it contains log time delay in its tree, and as its mem-

ory grows its data paths become longer, requiring more
communication time. The final result is that

• the APSA memory has the same asymptotic cycle

time as a RAM memory, although it is slower by a
constant factor K, and

• fewer cycles are needed to run an algorithm on
APSA than on a conventional machine.

Table 1 compares the cycle time for RAM vs. APSA

using three different measures: counting one time unit

per cycle, considering the delay through the combina-

tional logic trees, and considering also the electrical wire

delay.

measure RAM APSA

constant 1 1

logic delay log n log n

wire delay v_

Table 1. Cycle time complexity

An APSA cycle is slower than a RAM's by a con-
stant factor K, which determines the actual attainable

speed. Fortunately, the MPP sheds light on the value

of K. The MPP contains a tree of logic that computes

the logical or of the P register in all 16,384 PEs. This

corresponds roughly to a 1-bit upsweep, and it takes
about half a microsecond. The APSA instructions re-

quire several bits going both up and down, but it should

still be feasible to attain a hardware cycle time on the

order of 10 microseconds, which would lead to excellent

performance. However, the emulator for APSA that
runs on the MPP takes several hundred microseconds

per cycle. This is good enough for extensive experimen-

tation, but will probably not be competitive with Lisp
implementations on conventional computers.

The preceding discussion concerned parallelism
within data structure operations. There is also another

level of parallelism. The APSA memory can perform

a parallel data structure operation on several different

data structures -- in parallel. For example, the Lisp

mapcar functional applies a function to every element
in a list. In some cases, APSA can execute all these

applications simultaneously. For example, the index
operation can index into many lists at the same time.

However, storage allocation can lead to problems. If a

program tries to perform many cona operations at the

same time, the system may require a number of cycles to

obtain all the new storage words that it needs. Further

work is needed to assess the potentials and limitations

of this form of parallelism.

A promising method for implementing applicative

programming languages is to translate them into com-

binators, which can then be reduced on an appropriate

architecture. APSA has the ability to reduce many com-

binators simultaneously, although a number of problems

with storage allocation remain. This looks like a good

approach for designing parallel combinator reduction
machines.

THE SKEWED TREE LAYOUT

The basic idea in mapping the VLSI memory de-

sign onto the MPP array unit is to simulate an area of

the chip with each processing element. If that is done
in a straightforward manner, only 1/4 of the PEs will
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Figure 2. Skewed H-tree layout
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simulate a memory cell; the others will be dedicated

to the tree nodes and the data paths connecting the

nodes, while some of the PEs would be wasted entirely.

The original VLSI layout for APSA had these properties
(Ref. 8). There is nothing inherently wrong with this

approach, but it is possible to go from a 4,096 cell lay-

out to a 16,384 cell layout without losing any potential

parallelism.

By placing one memory cell in each PE, the emu-

lator can perform all the cell logic operations in paral-

lel. The nodes never execute in parallel with the cells

anyway, because of data dependencies in the sweep al-

gorithm. This means that we lose no parallelism if each
PE simulates a node in addition to a cell. Furthermore,

the nodes execute simultaneously only at one level in

the tree at a time. For example, on an upsweep all the

cells execute, then all the bottom level nodes, then all
the nodes at the next higher level, etc. Therefore a PE

can simulate a cell and several nodes, as long as all of

its nodes appear at different levels in the tree.

These considerations lead to a "skewed H-tree" lay-

out that allows all 16,384 PEs to contain a cell. Each

data path between two subtrees is skewed to one side or

the other, so that its node and path elements actually

lie on top of one of the subtrees {forcing some PEs to
hold several nodes). We place the node and path on

whichever side yields the shorter data paths (and hence

the greatest speed).

Figure 2 shows the skewed layout for a 16x 16 array,
with 256 cells. Each cell is represented by its address

(the leftmost cell is 0 and the rightmost is 255). Small

black squares indicate nodes, while the data paths con-
necting nodes appear as thick lines. Thin lines show the

PE array, making it easy to see what cells, nodes and
paths lie in any PE.

This layout consists of a recursive sequence of

squares. A square is a structure with

• a central node near the center (i.e., in one of the

four PEs adjoining the true geometric center),

• data paths from the central node going east and
west to the eastern node and the western node re-

spectively, and

• data paths leading from the eastern and western
nodes to the northern subtrees and the southern
sub trees.

For example, consider the 2×2 square at the northwest

corner of Figure 2, consisting of cells 40-43. The central

node is at level 2 in the tree (there are 22 cells below
it) and it happens to be in the PE to the southeast of

the geometric center of the 2×2 grid: thus this node

has SE parity. The eastern and western nodes, both of

level 1, appear in cells 40 and 43 respectively. Since the

northern and southern subtrees are at level 0, they just
consist of cells. Notice that 2×2 squares appear with

all four possible parities: NE, NW, SE and SW.

The largest square (level 8, in cell 245) illus-
trates several points that affect the communication al-

gorithms. The eastern node has W parity, in order to
minimize its data path. For the same reason the west-

ern node has E parity. Both of these level 7 nodes in-

herit their N parity from the central node. One of the

data paths from a node to its subtrees will always be
shorter than the other one -- and the communication

algorithms must be able to handle this.

The skewed H-tree has a useful property: no PE

represents more than four nodes, regardless of the size

of the layout. That is significant because every PE must

allocate memory for one cell and all its nodes. Each PE

contains only 1024 bits, so an unbounded number of

nodes per PE would take too much space.

The sweep algorithm needs to know how long the

tree data paths are in order to control its shifting loops.

A simple recurrence equation yields the length di of a
long path from a node at level i down to its subtrees

(the short path has length di - 1):

dl = 1 d2 = 1 d3 = 1 d4 = 1

di = di-1 for i even, i > 4

di = 2di-1 for i odd, i > 4.

The sweep algorithm computes these recurrences as it

moves up or down the tree. Thus it must periodically
multiply the current d by 2 on an upsweep and divide d

by 2 on a downsweep. The sweeps run entirely in the PE

Control Unit, without any help from the Main Control
Unit, and the PECU has no scalar arithmetic facilities

-- so the sweep algorithm does its multiplications and

divisions using Peano arithmetic, completely in parallel
with other operations!

It is possible to place data paths connecting neigh-

boring cells in the existing tree structure. Using that
method, a shift operation would send data from a cell

part way up the tree, and then back down the other

branch of the tree to the neighbor. This is probably the

best way to implement the cell neighbor data paths in
a VLSI layout, because it reduces the number of wires

that must cross each other. However, it is faster on the

MPP to route data in a straight line from each cell to its

neighbor, and the APSA emulator takes this approach.

The shift algorithm operates by sending the con-

tents of each cell to its neighbor within one layout

square. It repeats the process for each square, working

from the smallest square size (2x2) up to the largest
(normally 128x128). At each square size, all squares
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dk

01

02

03
04

11 r ---*

1 2 rsr

1 3 rsr ---*

1 4 rsr --*

1 5 rsr ---*

1 6 rsr ---*

21 r ---*

2 2 rsr --*

2 3 rsrsr
2 4 rsrsr

2 5 rsrsr ---*

2 6 rsrsr ---*

2 7 rsrsr --*

31 r --*

3 2 rsr --+

3 3 rsrsr ---*

3 4 rsrsrsr

3 5 rsrsrsr ---*

3 6 rsrsrsr ---*

3 7 rsrsrsr --+

3 8 rsrsrsr ---*

41 r

4 2 rsr --_

4 3 rsrsr --*

4 4 rsrsrsr ---*
4 5 rsrsrsrsr

4 6 rsrsrsrsr --*

4 7 rsrsrsrsr ---*

4 8 rsrsrsrsr

49

sequence of operations

rw

rw rw

rw rw rw

rw rw rw rw

8 ---+ w

"-+ W 8W

wsr _ w 8w

wsr wsr ----+ w 8w

wsr wsr wor .-+ w 8w

wsr wsr wsr wsr _ w sw

88 _ w

8 --'+ wsw

----+ w 8w 8w

wsr _ w 8w 8w

wor wsr _ w 8w sw

wsr wsr wsr -.+ w 8w 8w

wsr _)sr wsr wsr _ w sw sw

888 "-* w

s s ---+ w sw

8 _ w 8w 8w

----+ w 8w 8w 8w

w8r ---+ w 8w 8w 8w

wsr wsr _ w 8w 8w 8w

wsr wsr wsr --+ w 8w 8w 8w

wsr wsr wsr wsr --_ w sw sw sw

8888 ----+ w

888 --'+ WSW

88 --+ W SW SW

S ---_ W 8W 8W 8W

--+ W 8W 8W 8W 8W

wsr ----+ w 8w 8w 8w 811)

u)sr wsr -.+ w sw sw sw sw

wsr wsr wsr .-_ w sw sw sw sw

r sr sr sr sr ---+ w8r wsr wsr wsr ----* w 8w sw sw sw

Table 2. The pattern of communications for send

parity of the square's central node. Since central nodes

appear with each of the four parities NE, NW, SE, SW,

each of the four data movements will be invalid for 1/4

of the squares.

Fortunately, the invalid fields left by data move-

ment at one square level are all overwritten when the

shift algorithm does the next higher level. After doing

the 2×2 squares, the corner cells of all the 4×4 cells

send their data to their neigbors (within the square).

For the 4x4 square in the northwest corner of Figure 2,
the four corner source cells are 35, 39, 43 and 47 -- so

the west move writes the contents of cell 39 into cell 40,

replacing its old invalid contents left by the 2x2 moves.

Of course, 1/4 of the moves at this level are also in-
valid, but when the shift algorithm reaches the highest

square level (128×128), the only cell that remains with

an invalid neighbor input field is the leftmost cell in the
entire memory: cell 0 holds the contents of cell 255.

If the shift algorithm was called to rotate the memory,

this is the desired effect. Otherwise, after handling the

highest level square, the shift algorithm writes a value

into cell 0 that it receives from the memory controller.

THE COMMUNICATION ALGORITHMS

The sweep and shift algorithms must move k bits

(called the data path width) from a set of source PEs

to the corresponding destination PEs. The preceding
section outlined how shift and sweep locate the sources

and destinations and calculate the path distances d for

each move. It is also important to consider the details

of the data movement algorithm, send, because this is

the innermost loop of the APSA emulator, accounting
for much of the total execution time.

One factor simplifies the implementation of send:

all of the movements that it must perform at once go

in a straight line for the same distance d. However, two

other factors complicate it:

in the system participate simultaneously in the shift,

which sends data between the four corners of the square.

For example, at the 2×2 square size in Figure 2, a shift

right operation (moving the contents of cell i to the

neighbor input field of cell i + 1) causes the contents of

cell 40 to move north to 41, while cell 41 moves west to

42, 42 moves south to 43, and 43 moves east to 40. All

other 2×2 squares perform this pattern of moves at the
same time.

In general, the four data movements (north, west,

south and east) will include three legitimate movements
and an invalid one. Thus it was invalid to move the

contents of cell 43 east to 40. However, the particular
direction of movement that is invalid depends on the

• Simultaneous movements may go in different di-

rections. In particular, sweep always needs to send

data east and west, or north and south. The shift
algorithm always sends data all four directions.

• The two key parameters of a send -- the distance d
and the number of bits k -- are variables computed

by the calling algorithm. Therefore the send code
must be flexible enough to handle automatically

any combination of d and k.

Sending a bit from the source to the destination

involves three basic operations:

r read the bit into the source PE;



s shifteachbit onthedatapathonePEcloserto the
destination;and

w write the bit into the destination PE.

Since all the data paths have the same length and width,

and none of them cross each other, we can concentrate

on what happens to the data during a single movement.

Any send operation consists of a pattern of the r,

s and w primitives. For example, rsssw will send a

single bit (k=l) along a path 3 PEs long (d=3). The
situation is more complex when k > 1. In order to min-

imize the communication time, it is essential to pipeline

data along the path. This leads to a number of distinct

patterns of communication, illustrated by Table 2. The

send algorithm must use the values of d and k to deter-

mine the best communication pattern.

All the sources, destinations and data paths neces-
sary for sweep and shift must be marked in advance by

an initialization algorithm. The initializer's main func-

tion is to compute a set of mask lists, one for every node
level in the tree. Every processing element has its own

set of mask lists, and each one contains 14 individual
masks that indicate whether the PE contains a node at

each level in the tree, what the nodes' parities are, and

what data paths pass through the PE. The mask lists

allow the r, s and w primitives to operate in the rel-
evant PEs without disturbing data in the others. For

example, the r primitive places a "node present" mask

in the G register, and then executes a loadm P. SOURCE
instruction.

ORGANIZATION OF THE EMULATOR

The APSA system breaks naturally into three com-

ponents, and the MPP implementation reflects this

structure by running the components on separate com-

puters:

• The memory instruction set, which provides the

heart of APSA's parallelism and which requires

simulation of a VLSI architecture layout, runs

entirely in the Processing Element Control Unit

(PECU). This software, written in Pearl, includes

the initializer, shift and sweep algorithms, as well

as the node and cell logic functions for each instruc-

tion. The speed of these programs is of paramount
importance for the overall goals of the research.

• The memory controller and applicative language
interpreter, written in MCL, reside in the Main

Control Unit (MCU), and issue instructions to the

APSA memory through the call queue.

• The I/O system, written in Fortran, runs on the
MPP host.

PERFORMANCE RESULTS

This section discusses the performance of the em-
ulator's initializer and sweep algorithm. The shift al-

gorithm is similar to sweep, but it will run consider-

ably slower because its data path width will usually be

around 64 bits, while typical sweeps only require 3 or 4
bits.

The MPP execution times were measured using the

performance monitor, which is extremely accurate and

repeatable. In addition, the MPP simulator predicted

the same performance times for the smaller APSA lay-
outs.

All of the emulation algorithms (initialize, sweep

and shift) take a parameter that specifies the size of the

APSA layout -- they don't depend on the 128x 128 size

of the MPP array unit. In general, the layout may be

n×n for any n that is a power of 2. Consequently, the
height of the binary tree may be any even number.

Table 3 shows the time required to initialize APSA

for all the layouts that fit in the MPP array. While

growing a layout the initializer must perform one com-

plete shift and five complete downsweeps, in addition to
performing several other functions. The Layout column

shows the dimensions of each APSA layout. The Level

column gives the height of the binary tree for each lay-

out; thus a layout with Level-=n will contain 2'* Cells.

The Square column shows the depth of recursion in the
H-tree layout, which is also the number of iterations in

the outer loops of the sweep and shift algorithms.

Square Level Layout Cells Time (lls)

1 2 2 × 2 4 270

2 4 4×4 16 429

3 6 8x 8 64 596

4 8 16X16 256 784

5 10 32x32 1,024 1,019

6 12 64X64 4,096 1,339
7 14 128x128 16,384 1,817

Table 3. APSA initialization times in ps (MPP)

Table 4 gives the MPP execution times of the up-
sweep algorithm for data paths that are 1, 2 and 3 bits

wide. (The downsweep algorithm is almost identical.)
There are three phenomena that account for the vari-

ations among these times. First, the number of itera-

tions of the main sweep loop and the number of calls

to the node logic function both depend oh the layout

size (the Square column in Table 3 gives these values).

Second, the data paths become longer toward the top

of the tree in larger layouts -- that is why the execu-

tion time grows faster than linearly as a function of the

Square size. Third, the width of the data path (i.e.,
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Layout 1 Bit 2 Bits 3 Bits Increase

2x2 12 17 23

4x4 20 31 42 +19

8x8 29 45 62 +20

16× 16 39 62 85 +23

32x32 51 80 110 +25

64×64 68 104 140 +30
128×128 95 137 179 +39

Table 4. Upsweep times in ps (MPP)

Layout MPP Vax 780 Speedup

2×2 23 610 27

4×4 42 2,500 60

8×8 62 10,500 169

16×16 85 53,000 624

32×32 ll0 175,000 1,591
64×64 140 706,000 5,043

128×128 179 2,872,000 16,045

Table 5. Comparison of upsweep times in ps

the number of bits being sent up the tree) determines

the number of iterations of sweep's inner loop, and the

node logic function also requires more time to operate
on more bits.

At this point it is interesting to consider the impli-
cations of Table 4 on the future course of the APSA re-

search project. Serious development of parallel Lisp and

SASL will require a moderately large memory. That

is why the emulator supports a skewed H-tree instead
of the conventional H-tree: it can place a memory cell

in every MPP processing element, providing the largest
memory size that is possible without loss in parallelism.

Therefore we are primarily interested in the last line of

Table 4, which gives sweep times for a 16,384 cell mem-

ory. Assuming two sweeps and several parallel opera-
tions in all the cells, a typical APSA instruction should

take about half a millisecond. This is certainly ade-

quate for extensive experimentation and development.
There is also the possibility that some applicative algo-

rithms may by able to perform the equivalent of several

hundred operations simultaneously. If that happens,

the MPP/APSA system could partially achieve a long-

standing goal of the programming language research

community: automatically speeding up a list process-

ing program on a parallel machine, without requiring

the programmer to specify any parallel operations (Refs.

11, 12). Of course, this goal is still far in the future.

Table 5 illustrates what the future of APSA would

be like without the MPP: it repeats the upsweep times

for a 3 bit data path and compares them with an APSA

upsweep algorithm running on a Vax 780 computer.

The Vax program is written in C, and it exploits some
of the standard techniques for efficiency in C (for ex-

ample, it increments pointers into arrays in order to

avoid most array index calculations). These timings

were generated using the "time" command in Berke-

ley Unix 4.2BSD, and there is an error range of about
+10%. The columns headed MPP and Vax 780 give the

running time in microseconds of a 3 bit upsweep on each

layout size. The Speedup column gives the ratio of Vaz

780 time divided by MPP time. It is important to real-

ize that these figures do not show how much faster the

MPP is than a Vax. They merely indicate how much

the performance of upsweep can be improved by moving
from a Vax to the MPP.

For the case of most interest -- a 3-bit upsweep

on a full 128x128 layout -- the MPP requires 179 ps,
while the Vax takes 2.87 seconds. At this rate, one

MPP-minute of upsweeps would correspond to eleven

Vax-days of CPU time. Thus the MPP makes it easy

to run emulations that would be inconceivable using

conventional computers.

DISCUSSION

The speedups in Table 5 may appear surprising,
because the MPP is nominally only on the order of 512

times faster than a Vax (it has 16,384 times more pro-
cessors and its word size is 1 biL compared with 32

on the Vax). But the actual performance speedup de-
pends in detail on the interaction between the algorithm

and each computer's architecture. In particular, the up-

sweep algorithm is inherently bit serial, so the large Vax

word length does not help at all. Theshift algorithm

uses long words, so the MPP's speedup will be much

smaller than for sweep.

It would be extremely valuable to investigate the

performance of APSA on a Connection Machine (Ref.

2) and compare it with the results given above. Since
the Connection Machine contains a network with long

data paths, it will be faster than the MPP for suffi-

ciently large layouts. On the other hand, the MPP's

faster cycle time should make it faster for smaller lay-
outs. Table 4 shows that much of the time for an up-

sweep for a 128x128 layout goes into bit-serial opera-
tions and the node logic functions, where the MPP is

faster. The longest data paths have length 32; the MPP

is.probably still faster than the Connection Machine at
this size because of its synchronous communications and
fast clock.

There are several other approaches to parallel im-

plementation of Lisp and related languages. Multil-

isp (Ref. 1) gives the programmer a parallel construct
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called a future, which allows parallel evaluation of in-

dependent expressions. Multilisp is being used to pro-

gram an MIMD parallel computer. Connection Machine

LISP (Ref. 10) takes an approach similar to APSA: it

makes parallel data structures available to the user pro-

grammer. However, it does not integrate parallel data
structures as deeply into the interpreter's environment
and continuations as APSA does. Another method for

implementing car and cdr on the MPP (Ref. Potter) al-

lows parallel searching of many lists, but its cons func-

tion requires time and space proportional to the length

of the second argument.

CONCLUSION

The Applicative Programming System Architec-

ture research is concerned with designing an applicative

language, a computer architecture and a VLSI hard-

ware implementation together, so that they cooperate

effectively. This research is leading toward better lan-

guage implementations and new architecture designs.
However, simulating the low level hardware on a con-

ventional computer is too slow to allow experimentation

with APSA's parallel algorithms.

The Massively Parallel Processor is ideal for simu-

lating VLSI circuits that have regular designs and short

data paths, such as systolic arrays. The VLSI layout for
APSA's memory contains parallel logic in every mem-

ory cell and a binary tree for communications and ad-

ditional logic. The tree layout contains only a few long

paths, so it is well suited for implementation on the

MPP. The key tree communication algorithm shows a

huge speedup -- by a factor of 16,000 -- compared with
simulation on a conventional computer.

The basic APSA operations are fast enough on the

MPP to allow experimentation with a realistic paral-

lel implementation of an applicative programming lan-

guage, and a parallel implementation of Lisp is in

progress. Thus the MPP is making it possible to study
new ideas in parallel VLSI architectures.
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